Artwork

Conteúdo fornecido por tele-TASK and Dr. Thorsten Papenbrock. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por tele-TASK and Dr. Thorsten Papenbrock ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Distributed Data Analytics (WT 2017/18) - tele-TASK

Compartilhar
 

Manage series 1914092
Conteúdo fornecido por tele-TASK and Dr. Thorsten Papenbrock. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por tele-TASK and Dr. Thorsten Papenbrock ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
The free lunch is over! Computer systems up until the turn of the century became constantly faster without any particular effort simply because the hardware they were running on increased its clock speed with every new release. This trend has changed and today's CPUs stall at around 3 GHz. The size of modern computer systems in terms of contained transistors (cores in CPUs/GPUs, CPUs/GPUs in compute nodes, compute nodes in clusters), however, still increases constantly. This caused a paradigm shift in writing software: instead of optimizing code for a single thread, applications now need to solve their given tasks in parallel in order to expect noticeable performance gains. Distributed computing, i.e., the distribution of work on (potentially) physically isolated compute nodes is the most extreme method of parallelization. Big Data Analytics is a multi-million dollar market that grows constantly! Data and the ability to control and use it is the most valuable ability of today's computer systems. Because data volumes grow so rapidly and with them the complexity of questions they should answer, data analytics, i.e., the ability of extracting any kind of information from the data becomes increasingly difficult. As data analytics systems cannot hope for their hardware getting any faster to cope with performance problems, they need to embrace new software trends that let their performance scale with the still increasing number of processing elements. In this lecture, we take a look a various technologies involved in building distributed, data-intensive systems. We discuss theoretical concepts (data models, encoding, replication, ...) as well as some of their practical implementations (Akka, MapReduce, Spark, ...). Since workload distribution is a concept which is useful for many applications, we focus in particular on data analytics.
  continue reading

14 episódios

Artwork
iconCompartilhar
 
Manage series 1914092
Conteúdo fornecido por tele-TASK and Dr. Thorsten Papenbrock. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por tele-TASK and Dr. Thorsten Papenbrock ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
The free lunch is over! Computer systems up until the turn of the century became constantly faster without any particular effort simply because the hardware they were running on increased its clock speed with every new release. This trend has changed and today's CPUs stall at around 3 GHz. The size of modern computer systems in terms of contained transistors (cores in CPUs/GPUs, CPUs/GPUs in compute nodes, compute nodes in clusters), however, still increases constantly. This caused a paradigm shift in writing software: instead of optimizing code for a single thread, applications now need to solve their given tasks in parallel in order to expect noticeable performance gains. Distributed computing, i.e., the distribution of work on (potentially) physically isolated compute nodes is the most extreme method of parallelization. Big Data Analytics is a multi-million dollar market that grows constantly! Data and the ability to control and use it is the most valuable ability of today's computer systems. Because data volumes grow so rapidly and with them the complexity of questions they should answer, data analytics, i.e., the ability of extracting any kind of information from the data becomes increasingly difficult. As data analytics systems cannot hope for their hardware getting any faster to cope with performance problems, they need to embrace new software trends that let their performance scale with the still increasing number of processing elements. In this lecture, we take a look a various technologies involved in building distributed, data-intensive systems. We discuss theoretical concepts (data models, encoding, replication, ...) as well as some of their practical implementations (Akka, MapReduce, Spark, ...). Since workload distribution is a concept which is useful for many applications, we focus in particular on data analytics.
  continue reading

14 episódios

Όλα τα επεισόδια

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências