Artwork

Conteúdo fornecido por Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Breaking Math, Gabriel Hesch, and Autumn Phaneuf ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Molecular dynamics simulation with GFlowNets: machine learning the importance of energy estimators in computational chemistry and drug discovery

28:23
 
Compartilhar
 

Manage episode 442931043 series 1358022
Conteúdo fornecido por Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Breaking Math, Gabriel Hesch, and Autumn Phaneuf ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: breakingmathpodcast@gmail.com

  continue reading

166 episódios

Artwork
iconCompartilhar
 
Manage episode 442931043 series 1358022
Conteúdo fornecido por Breaking Math, Gabriel Hesch, and Autumn Phaneuf. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Breaking Math, Gabriel Hesch, and Autumn Phaneuf ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode of Breaking Math, hosts Autumn and Gabriel take a deep dive into the paper “Towards Equilibrium Molecular Conformation Generation with GFlowNets” by Volokova et al., published in the Digital Discovery Journal by the Royal Society of Chemistry. They explore the cutting-edge intersection of molecular conformations and machine learning, comparing traditional methods like molecular dynamics and cheminformatics with the innovative approach of Generative Flow Networks (GFlowNets) for molecular conformation generation.

The episode covers empirical results that showcase the effectiveness of GFlowNets in computational chemistry, their scalability, and the role of energy estimators in advancing fields like drug discovery. Tune in to learn how machine learning is transforming the way we understand molecular structures and driving breakthroughs in chemistry and pharmaceuticals.

Keywords: molecular conformations, machine learning, GFlowNets, computational chemistry, drug discovery, molecular dynamics, cheminformatics, energy estimators, empirical results, scalability, math, mathematics, physics, AI

Become a patron of Breaking Math for as little as a buck a month
You can find the paper “Towards equilibrium molecular conformation generation with GFlowNets” by Volokova et al in Digital Discovery Journal by the Royal Society of Chemistry.

Follow Breaking Math on Twitter, Instagram, LinkedIn, Website, YouTube, TikTok

Follow Autumn on Twitter and Instagram

Follow Gabe on Twitter.

Become a guest here

email: breakingmathpodcast@gmail.com

  continue reading

166 episódios

Semua episod

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências