Artwork

Conteúdo fornecido por Daryl Taylor. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Daryl Taylor ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

CSE805L11 - Understanding Distance Metrics and K-Nearest Neighbors (KNN) in Machine Learning

8:30
 
Compartilhar
 

Manage episode 444544478 series 3603581
Conteúdo fornecido por Daryl Taylor. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Daryl Taylor ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode, Eugene Uwiragiye delves deep into the world of machine learning, focusing on one of the most essential algorithms: K-Nearest Neighbors (KNN). The discussion centers around various types of distance metrics used in clustering and classification, including Euclidean and Manhattan distances, and their importance in determining nearest neighbors in data sets.

Listeners will gain insight into:

  • How distance metrics like Euclidean and Manhattan work.
  • The four key properties that define a distance metric.
  • The significance of distance in KNN and its role in data analysis.
  • Choosing the right value for "K" and the trade-offs between big picture analysis and focusing on details.

Key Takeaways:

  1. Distance Metrics: Explore how Euclidean and Manhattan distances are calculated and used in KNN to determine proximity between data points.
  2. Properties of a Distance Metric: Eugene outlines the four fundamental properties any valid distance metric should have, including non-negativity and triangular inequality.
  3. Choosing K in KNN: Learn how the choice of "K" affects the performance of KNN, with a balance between the number of neighbors and prediction accuracy.
  4. Practical Example: Eugene walks through a practical application of KNN using the Iris dataset, showcasing how different values of "K" influence classification accuracy.

Mentioned Tools & Resources:

  • Python’s Scikit-learn library
  • The Iris dataset for practicing KNN
  • Elbow method for determining the optimal value of "K"

Call to Action:

Got a question about KNN or machine learning in general? Reach out to us on [Insert Contact Info]. Don’t forget to subscribe and leave a review!

  continue reading

20 episódios

Artwork
iconCompartilhar
 
Manage episode 444544478 series 3603581
Conteúdo fornecido por Daryl Taylor. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Daryl Taylor ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode, Eugene Uwiragiye delves deep into the world of machine learning, focusing on one of the most essential algorithms: K-Nearest Neighbors (KNN). The discussion centers around various types of distance metrics used in clustering and classification, including Euclidean and Manhattan distances, and their importance in determining nearest neighbors in data sets.

Listeners will gain insight into:

  • How distance metrics like Euclidean and Manhattan work.
  • The four key properties that define a distance metric.
  • The significance of distance in KNN and its role in data analysis.
  • Choosing the right value for "K" and the trade-offs between big picture analysis and focusing on details.

Key Takeaways:

  1. Distance Metrics: Explore how Euclidean and Manhattan distances are calculated and used in KNN to determine proximity between data points.
  2. Properties of a Distance Metric: Eugene outlines the four fundamental properties any valid distance metric should have, including non-negativity and triangular inequality.
  3. Choosing K in KNN: Learn how the choice of "K" affects the performance of KNN, with a balance between the number of neighbors and prediction accuracy.
  4. Practical Example: Eugene walks through a practical application of KNN using the Iris dataset, showcasing how different values of "K" influence classification accuracy.

Mentioned Tools & Resources:

  • Python’s Scikit-learn library
  • The Iris dataset for practicing KNN
  • Elbow method for determining the optimal value of "K"

Call to Action:

Got a question about KNN or machine learning in general? Reach out to us on [Insert Contact Info]. Don’t forget to subscribe and leave a review!

  continue reading

20 episódios

Todos os episódios

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências