Artwork

Conteúdo fornecido por Half Stack Data Science. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Half Stack Data Science ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

S03E02 - The joy of teaching Python - with Reuven Lerner

40:47
 
Compartilhar
 

Manage episode 373812022 series 2423821
Conteúdo fornecido por Half Stack Data Science. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Half Stack Data Science ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode of Half Stack Data Science we continue our season 3, all about data science education, with a conversation with Reuven Lerner.

Reuven is a full-time Python trainer with a bachelor's degree in computer science and engineering from MIT, and a PhD in learning sciences from Northwestern University.

In 2020, Reuven published "Python Workout" a collection of Python exercises with extensive explanations, published by Manning. He's currently working on "Pandas workout" a similar collection of exercises using the "pandas" library for data analytics.

Reuven's free, weekly "Better developers" newsletter, about Python and software engineering, is read by more than 30,000 developers around the globe.

Reuven's most recent venture is Bamboo Weekly: Every Wednesday, he presents a problem based on current events, using a public data set. And every Thursday, he shared detailed solutions to those problems using Pandas.

We spoke to Reuven about his love of teaching Python to beginners, what he thinks of notebooks and ChatGPT as educational tools, and how he got banned for life from advertising on Facebook.

  continue reading

29 episódios

Artwork
iconCompartilhar
 
Manage episode 373812022 series 2423821
Conteúdo fornecido por Half Stack Data Science. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Half Stack Data Science ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode of Half Stack Data Science we continue our season 3, all about data science education, with a conversation with Reuven Lerner.

Reuven is a full-time Python trainer with a bachelor's degree in computer science and engineering from MIT, and a PhD in learning sciences from Northwestern University.

In 2020, Reuven published "Python Workout" a collection of Python exercises with extensive explanations, published by Manning. He's currently working on "Pandas workout" a similar collection of exercises using the "pandas" library for data analytics.

Reuven's free, weekly "Better developers" newsletter, about Python and software engineering, is read by more than 30,000 developers around the globe.

Reuven's most recent venture is Bamboo Weekly: Every Wednesday, he presents a problem based on current events, using a public data set. And every Thursday, he shared detailed solutions to those problems using Pandas.

We spoke to Reuven about his love of teaching Python to beginners, what he thinks of notebooks and ChatGPT as educational tools, and how he got banned for life from advertising on Facebook.

  continue reading

29 episódios

Todos os episódios

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências

Ouça este programa enquanto explora
Reproduzir