Artwork

Conteúdo fornecido por Linear Digressions, Ben Jaffe, and Katie Malone. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Linear Digressions, Ben Jaffe, and Katie Malone ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

The Lottery Ticket Hypothesis

19:45
 
Compartilhar
 

Manage episode 254320684 series 2527355
Conteúdo fornecido por Linear Digressions, Ben Jaffe, and Katie Malone. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Linear Digressions, Ben Jaffe, and Katie Malone ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

291 episódios

Artwork

The Lottery Ticket Hypothesis

Linear Digressions

23 subscribers

published

iconCompartilhar
 
Manage episode 254320684 series 2527355
Conteúdo fornecido por Linear Digressions, Ben Jaffe, and Katie Malone. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Linear Digressions, Ben Jaffe, and Katie Malone ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these subnetworks (so-called “winning lottery tickets”), it’s not the training process that makes them good at their classification or regression tasks: they just happened to be initialized in a way that was very effective. This changes the way we think about what training might be doing, in a pretty fundamental way. Sometimes, instead of crafting a good fit from wholecloth, training might be finding the parts of the network that always had predictive power to begin with, and isolating and strengthening them. This research is pretty recent, having only come to prominence in the last year, but nonetheless challenges our notions about what it means to train a machine learning model.
  continue reading

291 episódios

Όλα τα επεισόδια

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências