Artwork

Conteúdo fornecido por HackerNoon. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por HackerNoon ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Concluding Our Characterizing Biases in Cable News Study

14:27
 
Compartilhar
 

Manage episode 419689486 series 3474160
Conteúdo fornecido por HackerNoon. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por HackerNoon ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/concluding-our-characterizing-biases-in-cable-news-study.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #media-study, #bias-in-the-news, #us-cable-news-bias, #is-the-news-biased, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data in the form of transcripts. Our focus was on analyzing gatekeeping bias, which pertains to the topics discussed on cable news programs, and writing style bias, which refers to the language used to discuss these topics.

  continue reading

166 episódios

Artwork
iconCompartilhar
 
Manage episode 419689486 series 3474160
Conteúdo fornecido por HackerNoon. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por HackerNoon ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/concluding-our-characterizing-biases-in-cable-news-study.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #media-study, #bias-in-the-news, #us-cable-news-bias, #is-the-news-biased, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The primary objective of this paper was to develop a model capable of characterizing the biases of cable news programs given a large volume of text data in the form of transcripts. Our focus was on analyzing gatekeeping bias, which pertains to the topics discussed on cable news programs, and writing style bias, which refers to the language used to discuss these topics.

  continue reading

166 episódios

すべてのエピソード

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências

Ouça este programa enquanto explora
Reproduzir