Artwork

Conteúdo fornecido por Google Developer Podcasts. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Google Developer Podcasts ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Sayak Paul - Getting started with community contributions, diffusion models, and more

45:21
 
Compartilhar
 

Manage episode 380992124 series 3458329
Conteúdo fornecido por Google Developer Podcasts. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Google Developer Podcasts ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Meet Sayak Paul, a Machine Learning Engineer specializing in diffusion models at Hugging Face and GDE for ML and Google Cloud. He shares how his community contributions led him towards getting his current dream job at Hugging Face. Join Ashley, Gus, and Sayak for a chat about resources for developers to get into machine learning, how diffusion models have exploded in the past year, the role of responsible AI and much more.

Resources mentioned: Google Developer Expert Program → https://goo.gle/3S6IVGo TF Hub → https://goo.gle/3S5t9LY Hugging Face →https://goo.gle/45KyBXC Sayak bio and website → https://goo.gle/3Mas9Cv Sayak’s Twitter → https://goo.gle/3QtxEO7

Courses: Google Summer of Code→ https://goo.gle/3Fv2CA4 fast.ai course → https://goo.gle/45HRLxp Coursera Deep Learning specialization → https://goo.gle/3S8Kljx CS 231N - Stanford → https://goo.gle/3QvIt3o

Books: Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop (Author)https://goo.gle/493iJm3 Grokking Deep Learning First Edition, by Andrew Trask (Author) → https://goo.gle/40fNX5y

  continue reading

28 episódios

Artwork
iconCompartilhar
 
Manage episode 380992124 series 3458329
Conteúdo fornecido por Google Developer Podcasts. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Google Developer Podcasts ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Meet Sayak Paul, a Machine Learning Engineer specializing in diffusion models at Hugging Face and GDE for ML and Google Cloud. He shares how his community contributions led him towards getting his current dream job at Hugging Face. Join Ashley, Gus, and Sayak for a chat about resources for developers to get into machine learning, how diffusion models have exploded in the past year, the role of responsible AI and much more.

Resources mentioned: Google Developer Expert Program → https://goo.gle/3S6IVGo TF Hub → https://goo.gle/3S5t9LY Hugging Face →https://goo.gle/45KyBXC Sayak bio and website → https://goo.gle/3Mas9Cv Sayak’s Twitter → https://goo.gle/3QtxEO7

Courses: Google Summer of Code→ https://goo.gle/3Fv2CA4 fast.ai course → https://goo.gle/45HRLxp Coursera Deep Learning specialization → https://goo.gle/3S8Kljx CS 231N - Stanford → https://goo.gle/3QvIt3o

Books: Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop (Author)https://goo.gle/493iJm3 Grokking Deep Learning First Edition, by Andrew Trask (Author) → https://goo.gle/40fNX5y

  continue reading

28 episódios

Alle Folgen

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências