Artwork

Conteúdo fornecido por Software Engineering Daily. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Software Engineering Daily ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Building AI Agents on the Frontend with Sam Bhagwat and Abhi Aiyer

57:04
 
Compartilhar
 

Manage episode 516628438 series 1418007
Conteúdo fornecido por Software Engineering Daily. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Software Engineering Daily ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Most AI agent frameworks are backend-focused and written in Python, which introduces complexity when building full-stack AI applications with JavaScript or TypeScript frontends. This gap makes it harder for frontend developers to prototype, integrate, and iterate on AI-powered features.

Mastra is an open-source TypeScript framework focused on building AI agents and has primitives such as agents, tools, workflows, and RAG.

Sam Bhagwat and Abhi Aiyer are co-founders at Mastra. They join the podcast with Nick Nisi to talk about this state of frontend tooling for AI agents, AI agent primitives, MCP integration, and more.

Nick Nisi is a conference organizer, speaker, and developer focused on tools across the web ecosystem. He has organized and emceed several conferences and has led NebraskaJS for more than a decade. Nick currently works as a developer experience engineer at WorkOS.

Please click here to see the transcript of this episode.

Sponsorship inquiries: [email protected]

The post Building AI Agents on the Frontend with Sam Bhagwat and Abhi Aiyer appeared first on Software Engineering Daily.

  continue reading

1823 episódios

Artwork
iconCompartilhar
 
Manage episode 516628438 series 1418007
Conteúdo fornecido por Software Engineering Daily. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Software Engineering Daily ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Most AI agent frameworks are backend-focused and written in Python, which introduces complexity when building full-stack AI applications with JavaScript or TypeScript frontends. This gap makes it harder for frontend developers to prototype, integrate, and iterate on AI-powered features.

Mastra is an open-source TypeScript framework focused on building AI agents and has primitives such as agents, tools, workflows, and RAG.

Sam Bhagwat and Abhi Aiyer are co-founders at Mastra. They join the podcast with Nick Nisi to talk about this state of frontend tooling for AI agents, AI agent primitives, MCP integration, and more.

Nick Nisi is a conference organizer, speaker, and developer focused on tools across the web ecosystem. He has organized and emceed several conferences and has led NebraskaJS for more than a decade. Nick currently works as a developer experience engineer at WorkOS.

Please click here to see the transcript of this episode.

Sponsorship inquiries: [email protected]

The post Building AI Agents on the Frontend with Sam Bhagwat and Abhi Aiyer appeared first on Software Engineering Daily.

  continue reading

1823 episódios

All episodes

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências

Ouça este programa enquanto explora
Reproduzir