Artwork

Conteúdo fornecido por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Improving Analytics Using Enriched Network Flow Data

1:02:25
 
Compartilhar
 

Manage episode 361742674 series 1264075
Conteúdo fornecido por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

174 episódios

Artwork
iconCompartilhar
 
Manage episode 361742674 series 1264075
Conteúdo fornecido por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Classic tool suites that are used to process network flow records deal with very limited detail on the network connections they summarize. These tools limit detail for several reasons: (1) to maintain long-baseline data, (2) to focus on security-indicative data fields, and (3) to support data collection across large or complex infrastructures. However, a consequence of this limited detail is that analysis results based on this data provide information about indications of behavior rather than information that accurately identifies behavior with high confidence. In this webcast, Tim Shimeall and Katherine Prevost discuss how to use IPFIX-formatted data with detail derived from deep packet inspection (DPI) to provide increased confidence in identifying behavior.

  continue reading

174 episódios

すべてのエピソード

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências

Ouça este programa enquanto explora
Reproduzir