Fique off-line com o app Player FM !
Neuroscientists isolate promising antibodies & Covid-19 enters the brain
Manage episode 313389741 series 3268975
The study was led by a pair of neuroscientists, Thomas J. "T.J." Esparza, B.S., and David L. Brody, M.D., Ph.D., who work in a brain imaging lab at the NIH's National Institute of Neurological Disorders and Stroke (NINDS).
"For years TJ and I had been testing out how to use nanobodies to improve brain imaging. When the pandemic broke, we thought this was a once in a lifetime, all-hands-on-deck situation and joined the fight," said Dr. Brody, who is also a professor at Uniformed Services University for the Health Sciences and the senior author of the study. "We hope that these anti-COVID-19 nanobodies may be highly effective and versatile in combating the coronavirus pandemic."A nanobody is a special type of antibody naturally produced by the immune systems of camelids, a group of animals that includes camels, llamas, and alpacas. On average, these proteins are about a tenth the weight of most human antibodies. This is because nanobodies isolated in the lab are essentially free-floating versions of the tips of the arms of heavy chain proteins, which form the backbone of a typical Y-shaped human IgG antibody. These tips play a critical role in the immune system's defenses by recognizing proteins on viruses, bacteria, and other invaders, also known as antigens.
COVID-19 virus enters the brain, research strongly suggests
More and more evidence is coming out that people with COVID-19 are suffering from cognitive effects, such as brain fog and fatigue.
And researchers are discovering why. The SARS-CoV-2 virus, like many viruses before it, is bad news for the brain. In a study published Dec.16 in Nature Neuroscience, researchers found that the spike protein, often depicted as the red arms of the virus, can cross the blood-brain barrier in mice.
This strongly suggests that SARS-CoV-2, the cause of COVID-19, can enter the brain.
The spike protein, often called the S1 protein, dictates which cells the virus can enter. Usually, the virus does the same thing as its binding protein, said corresponding author William A. Banks, a professor of medicine at the University of Washington School of Medicine and a Puget Sound Veterans Affairs Healthcare System physician and researcher. Banks said binding proteins like S1 usually by themselves cause damage as they detach from the virus and cause inflammation.
3 episódios
Manage episode 313389741 series 3268975
The study was led by a pair of neuroscientists, Thomas J. "T.J." Esparza, B.S., and David L. Brody, M.D., Ph.D., who work in a brain imaging lab at the NIH's National Institute of Neurological Disorders and Stroke (NINDS).
"For years TJ and I had been testing out how to use nanobodies to improve brain imaging. When the pandemic broke, we thought this was a once in a lifetime, all-hands-on-deck situation and joined the fight," said Dr. Brody, who is also a professor at Uniformed Services University for the Health Sciences and the senior author of the study. "We hope that these anti-COVID-19 nanobodies may be highly effective and versatile in combating the coronavirus pandemic."A nanobody is a special type of antibody naturally produced by the immune systems of camelids, a group of animals that includes camels, llamas, and alpacas. On average, these proteins are about a tenth the weight of most human antibodies. This is because nanobodies isolated in the lab are essentially free-floating versions of the tips of the arms of heavy chain proteins, which form the backbone of a typical Y-shaped human IgG antibody. These tips play a critical role in the immune system's defenses by recognizing proteins on viruses, bacteria, and other invaders, also known as antigens.
COVID-19 virus enters the brain, research strongly suggests
More and more evidence is coming out that people with COVID-19 are suffering from cognitive effects, such as brain fog and fatigue.
And researchers are discovering why. The SARS-CoV-2 virus, like many viruses before it, is bad news for the brain. In a study published Dec.16 in Nature Neuroscience, researchers found that the spike protein, often depicted as the red arms of the virus, can cross the blood-brain barrier in mice.
This strongly suggests that SARS-CoV-2, the cause of COVID-19, can enter the brain.
The spike protein, often called the S1 protein, dictates which cells the virus can enter. Usually, the virus does the same thing as its binding protein, said corresponding author William A. Banks, a professor of medicine at the University of Washington School of Medicine and a Puget Sound Veterans Affairs Healthcare System physician and researcher. Banks said binding proteins like S1 usually by themselves cause damage as they detach from the virus and cause inflammation.
3 episódios
Todos os episódios
×Bem vindo ao Player FM!
O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.