Artwork

Conteúdo fornecido por Connected Data World. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Connected Data World ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Graph Analytics vs Graph Machine Learning | Jörg Schad

29:07
 
Compartilhar
 

Manage episode 365202417 series 2773575
Conteúdo fornecido por Connected Data World. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Connected Data World ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

38 episódios

Artwork
iconCompartilhar
 
Manage episode 365202417 series 2773575
Conteúdo fornecido por Connected Data World. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Connected Data World ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Graph Analytics has long demonstrated that it solves real-world problems including Fraud, Ranking, Recommendation, text summarization and other NLP tasks.

More recently, Graph Machine Learning applied directly on graphs using graph algorithms and machine learning, has been demonstrating significant advantages in solving the same problems as graph analytics as well as problems that are impractical to solve using graph analytics. Graph Machine Learning does this by training statistical models on the graph resulting in Graph Embeddings and Graph Neural Networks that are used to complex problems in a different way.

Jörg Schad, ArangoDB CTO, compares and contrasts these two approaches (spoiler: often complexity vs precision) in real-world scenarios. What factors should you consider when choosing one over the other and when do you even have a choice? Learn about exciting new developments in Graph ML and the graph techniques on which they are based.

---

Connected Data London 2024 has been announced!.

December 11-13, etc Venues St. Paul’s, City of London

Check #CDL24 for more Presentations, Keynotes, Masterclasses, and Workshops on cutting-edge topics from industry leaders and innovators: https://connected-data.london

  continue reading

38 episódios

همه قسمت ها

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências