Artwork

Conteúdo fornecido por Sanket Gupta. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Sanket Gupta ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

6 Steps to Transition to Data Science from non-CS background

15:58
 
Compartilhar
 

Manage episode 243278353 series 2550866
Conteúdo fornecido por Sanket Gupta. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Sanket Gupta ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode we will talk all about the various steps to transition to data science from non computer science backgrounds.
One of the main difficulties people face from non-CS backgrounds is how overwhelming it can be to transition to data science field, I talk about my own journey, and share the 6 steps which can help you in your own data science career!

00:00 to 02:10: Introduction

02:11 to 06:00: My Background of moving to data science from electrical engineering

06:01 to 10:56: Steps 1 to 3 covering things like using external APIs, already processed datasets and performing full stack data science work

10:57 to 11:55: Break sponsored by Anchor

11:56: End: Steps 4 to 6 covering things like math and statistics, machine learning pipelines and data structures & algorithms

Some useful links:

1) Andrew Ng Deep Learning Specialization Coursera https://www.coursera.org/specializations/deep-learning

2) Intro to Statistics by Sebastien Thrun https://www.udacity.com/course/intro-to-statistics--st101

3) Aurelion Geron's book on machine learning https://www.amazon.com/dp/1491962291/?tag=omnilence-20

4) Pramp for mock algorithm sessions on video https://www.pramp.com/

5) Leetcode for algorithm question datasets https://leetcode.com/

Some great datasets to get started in machine learning:

6) MNIST for hand written digits https://www.kaggle.com/c/digit-recognizer

7) Iris dataset for flower classification http://archive.ics.uci.edu/ml/datasets/iris

8) IMDB movie reviews https://ai.stanford.edu/~amaas/data/sentiment/

Thanks for listening!

--- Send in a voice message: https://podcasters.spotify.com/pod/show/the-data-life-podcast/message Support this podcast: https://podcasters.spotify.com/pod/show/the-data-life-podcast/support

  continue reading

27 episódios

Artwork
iconCompartilhar
 
Manage episode 243278353 series 2550866
Conteúdo fornecido por Sanket Gupta. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Sanket Gupta ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

In this episode we will talk all about the various steps to transition to data science from non computer science backgrounds.
One of the main difficulties people face from non-CS backgrounds is how overwhelming it can be to transition to data science field, I talk about my own journey, and share the 6 steps which can help you in your own data science career!

00:00 to 02:10: Introduction

02:11 to 06:00: My Background of moving to data science from electrical engineering

06:01 to 10:56: Steps 1 to 3 covering things like using external APIs, already processed datasets and performing full stack data science work

10:57 to 11:55: Break sponsored by Anchor

11:56: End: Steps 4 to 6 covering things like math and statistics, machine learning pipelines and data structures & algorithms

Some useful links:

1) Andrew Ng Deep Learning Specialization Coursera https://www.coursera.org/specializations/deep-learning

2) Intro to Statistics by Sebastien Thrun https://www.udacity.com/course/intro-to-statistics--st101

3) Aurelion Geron's book on machine learning https://www.amazon.com/dp/1491962291/?tag=omnilence-20

4) Pramp for mock algorithm sessions on video https://www.pramp.com/

5) Leetcode for algorithm question datasets https://leetcode.com/

Some great datasets to get started in machine learning:

6) MNIST for hand written digits https://www.kaggle.com/c/digit-recognizer

7) Iris dataset for flower classification http://archive.ics.uci.edu/ml/datasets/iris

8) IMDB movie reviews https://ai.stanford.edu/~amaas/data/sentiment/

Thanks for listening!

--- Send in a voice message: https://podcasters.spotify.com/pod/show/the-data-life-podcast/message Support this podcast: https://podcasters.spotify.com/pod/show/the-data-life-podcast/support

  continue reading

27 episódios

Todos os episódios

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências