Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Conteúdo fornecido por The Thesis Review and Sean Welleck. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por The Thesis Review and Sean Welleck ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !
Fique off-line com o app Player FM !
[14] Been Kim - Interactive and Interpretable Machine Learning Models
MP3•Home de episódios
Manage episode 302418431 series 2982803
Conteúdo fornecido por The Thesis Review and Sean Welleck. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por The Thesis Review and Sean Welleck ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Been Kim is a Research Scientist at Google Brain. Her research focuses on designing high-performance machine learning methods that make sense to humans. Been's PhD thesis is titled "Interactive and Interpretable Machine Learning Models for Human Machine Collaboration", which she completed in 2015 at MIT. We discuss her work on interpretability, including her work in the thesis on the Bayesian Case Model and its interactive version, as well as connections with her subsequent work on black-box interpretability methods that are used in many real-world applications. Episode notes: https://cs.nyu.edu/~welleck/episode14.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
…
continue reading
49 episódios
MP3•Home de episódios
Manage episode 302418431 series 2982803
Conteúdo fornecido por The Thesis Review and Sean Welleck. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por The Thesis Review and Sean Welleck ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Been Kim is a Research Scientist at Google Brain. Her research focuses on designing high-performance machine learning methods that make sense to humans. Been's PhD thesis is titled "Interactive and Interpretable Machine Learning Models for Human Machine Collaboration", which she completed in 2015 at MIT. We discuss her work on interpretability, including her work in the thesis on the Bayesian Case Model and its interactive version, as well as connections with her subsequent work on black-box interpretability methods that are used in many real-world applications. Episode notes: https://cs.nyu.edu/~welleck/episode14.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
…
continue reading
49 episódios
Todos os episódios
×Bem vindo ao Player FM!
O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.