Conteúdo fornecido por TWIML and Sam Charrington. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por TWIML and Sam Charrington ou seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

People love us!

User reviews

"Amo a função offline"
"Essa é a melhor maneira de lidar com suas assinaturas. Também é uma ótima forma de descobrir novos podcasts."

Understanding AI’s Impact on Social Disparities with Vinodkumar Prabhakaran - #617

31:14
 
Compartilhar
 

Manage episode 355901311 series 2355587
Conteúdo fornecido por TWIML and Sam Charrington. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por TWIML and Sam Charrington ou seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Today we’re joined by Vinodkumar Prabhakaran, a Senior Research Scientist at Google Research. In our conversation with Vinod, we discuss his two main areas of research, using ML, specifically NLP, to explore these social disparities, and how these same social disparities are captured and propagated within machine learning tools. We explore a few specific projects, the first using NLP to analyze interactions between police officers and community members, determining factors like level of respect or politeness and how they play out across a spectrum of community members. We also discuss his work on understanding how bias creeps into the pipeline of building ML models, whether it be from the data or the person building the model. Finally, for those working with human annotators, Vinod shares his thoughts on how to incorporate principles of fairness to help build more robust models.

The complete show notes for this episode can be found at https://twimlai.com/go/617.

  continue reading

667 episódios

iconCompartilhar
 
Manage episode 355901311 series 2355587
Conteúdo fornecido por TWIML and Sam Charrington. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por TWIML and Sam Charrington ou seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Today we’re joined by Vinodkumar Prabhakaran, a Senior Research Scientist at Google Research. In our conversation with Vinod, we discuss his two main areas of research, using ML, specifically NLP, to explore these social disparities, and how these same social disparities are captured and propagated within machine learning tools. We explore a few specific projects, the first using NLP to analyze interactions between police officers and community members, determining factors like level of respect or politeness and how they play out across a spectrum of community members. We also discuss his work on understanding how bias creeps into the pipeline of building ML models, whether it be from the data or the person building the model. Finally, for those working with human annotators, Vinod shares his thoughts on how to incorporate principles of fairness to help build more robust models.

The complete show notes for this episode can be found at https://twimlai.com/go/617.

  continue reading

667 episódios

Semua episod

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

Guia rápido de referências