Artwork

Conteúdo fornecido por MGMA. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por MGMA ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

MGMA Insights: Addressing Diagnostic Errors in Healthcare with Susan Montminy

25:33
 
Compartilhar
 

Manage episode 449948780 series 1260959
Conteúdo fornecido por MGMA. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por MGMA ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Welcome to the MGMA Insights Podcast, hosted by Daniel Williams, Senior Editor at MGMA. In this episode, Daniel is joined by Susan Montminy, Director of Risk Management and Analytics for Caveris. With over 30 years of experience in patient safety and healthcare leadership, Montminy discusses key issues from Caveris's recent white paper, Hidden in Plain Sight: Exposing the Drivers of Diagnostic Error. Montminy shares her insights into the complexities of diagnostic errors, particularly within the high-stakes environment of emergency departments, and explores the role of teamwork, communication, and leadership in mitigating these errors.

Key Takeaways:

  • Diagnostic Errors Defined: Montminy uses the National Academy of Medicine's definition, describing diagnostic error as a failure to establish a timely and accurate diagnosis or failure to communicate it to the patient.
  • Emergency Departments as High-Risk Zones: Due to their fast-paced, chaotic environments, emergency departments are the source of about 28% of diagnostic errors. Montminy describes this setting as “controlled chaos,” where effective leadership, communication, and organization are critical to maintaining control.
  • Types of Diagnostic Bias: Two significant biases discussed are:
    • Anchoring Bias: Clinicians may fixate on initial symptoms, potentially overlooking new, relevant information.
    • Confirmation Bias: Clinicians may unconsciously prioritize information that confirms an initial diagnosis while dismissing conflicting data.
  • The Role of Diagnostic Timeouts: Inspired by surgical timeouts, diagnostic timeouts encourage clinicians to pause and reassess their diagnostic conclusions, fostering better accuracy through collaborative insights.
  • The Future of Diagnostic Error Management: AI shows promise in aiding diagnostics by consolidating data for clinicians. Montminy emphasizes the need to balance technological aid without overwhelming healthcare providers, especially in fast-paced settings like the ED.

Resources Mentioned:

  continue reading

641 episódios

Artwork
iconCompartilhar
 
Manage episode 449948780 series 1260959
Conteúdo fornecido por MGMA. Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por MGMA ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.

Welcome to the MGMA Insights Podcast, hosted by Daniel Williams, Senior Editor at MGMA. In this episode, Daniel is joined by Susan Montminy, Director of Risk Management and Analytics for Caveris. With over 30 years of experience in patient safety and healthcare leadership, Montminy discusses key issues from Caveris's recent white paper, Hidden in Plain Sight: Exposing the Drivers of Diagnostic Error. Montminy shares her insights into the complexities of diagnostic errors, particularly within the high-stakes environment of emergency departments, and explores the role of teamwork, communication, and leadership in mitigating these errors.

Key Takeaways:

  • Diagnostic Errors Defined: Montminy uses the National Academy of Medicine's definition, describing diagnostic error as a failure to establish a timely and accurate diagnosis or failure to communicate it to the patient.
  • Emergency Departments as High-Risk Zones: Due to their fast-paced, chaotic environments, emergency departments are the source of about 28% of diagnostic errors. Montminy describes this setting as “controlled chaos,” where effective leadership, communication, and organization are critical to maintaining control.
  • Types of Diagnostic Bias: Two significant biases discussed are:
    • Anchoring Bias: Clinicians may fixate on initial symptoms, potentially overlooking new, relevant information.
    • Confirmation Bias: Clinicians may unconsciously prioritize information that confirms an initial diagnosis while dismissing conflicting data.
  • The Role of Diagnostic Timeouts: Inspired by surgical timeouts, diagnostic timeouts encourage clinicians to pause and reassess their diagnostic conclusions, fostering better accuracy through collaborative insights.
  • The Future of Diagnostic Error Management: AI shows promise in aiding diagnostics by consolidating data for clinicians. Montminy emphasizes the need to balance technological aid without overwhelming healthcare providers, especially in fast-paced settings like the ED.

Resources Mentioned:

  continue reading

641 episódios

Minden epizód

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências