Artwork

Conteúdo fornecido por Karlsruher Institut für Technologie (KIT). Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Karlsruher Institut für Technologie (KIT) ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
Player FM - Aplicativo de podcast
Fique off-line com o app Player FM !

14: Wahrscheinlichkeitstheorie, Vorlesung, SS 2016, am 20.06.2016

1:25:26
 
Compartilhar
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Conteúdo fornecido por Karlsruher Institut für Technologie (KIT). Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Karlsruher Institut für Technologie (KIT) ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 episódios

Artwork
iconCompartilhar
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on December 29, 2022 22:15 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 188754104 series 1602822
Conteúdo fornecido por Karlsruher Institut für Technologie (KIT). Todo o conteúdo do podcast, incluindo episódios, gráficos e descrições de podcast, é carregado e fornecido diretamente por Karlsruher Institut für Technologie (KIT) ou por seu parceiro de plataforma de podcast. Se você acredita que alguém está usando seu trabalho protegido por direitos autorais sem sua permissão, siga o processo descrito aqui https://pt.player.fm/legal.
14 | 0:00:00 Starten 0:00:10 Englische Zusammenfassung von Begriffen und Resultaten aus Lektion 13 0:05:26 Satz von Fubini für Übergangswahrscheinlichkeiten 0:12:41 Bemerkungen zur Kopplung (Modellierungsaspekt, Zusammenhang mit bedingten W‘en) 0:22:54 Übergangswahrscheinlichkeiten und Dichten 0:30:16 Beispiel (Münzwürfe mit gleichverteilter Erfolgswahrscheinlichkeit) 0:39:35 Bemerkung (iterierte Berechnung von Erwartungswerten) 0:44:19 Konstruktion der Verteilung eines Zufallsvektors aus Marginalvert. und bedingter Verteil. 0:50:02 Bedingte Verteilung 0:59:23 Beispiel (Verteilungsmischungen) 1:06:49 Beispiel Negative Binomialverteilung als „Gamma-Mischung“ von Poisson-Verteilungen) 1:12:45 Beispiel (bivariate Normalverteilung) 1:20:30 Zerlegung einer gemeinsamen Verteilung in Marginalverteilung und bedingte Verteilung
  continue reading

20 episódios

Todos os episódios

×
 
Loading …

Bem vindo ao Player FM!

O Player FM procura na web por podcasts de alta qualidade para você curtir agora mesmo. É o melhor app de podcast e funciona no Android, iPhone e web. Inscreva-se para sincronizar as assinaturas entre os dispositivos.

 

Guia rápido de referências